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langbein@usgs.govABSTRACT: Most time series of geophysical phenomena are contaminated with temporally correlated 
errors that limit the precision of any derived parameters. For example, estimates of station velocity derived 
from a time series of daily geodetic position measurements will be biased and its uncertainty will be too 
small if temporally correlated errors are ignored [Langbein and Johnson, 1997, Williams, 2003]. In 
particular, the rate uncertainty can be underestimated by a factor 10 for many GNSS time series. Obtaining 
better estimates of uncertainties is limited by several factors, including selection of the correct model for the 
background noise and the computational requirements to estimate the parameters of the selected noise 
model when there are numerous observations. Here, I address the second problem of computational 
efficiency using maximum likelihood estimates (MLE).  Most geophysical time series have background 
noise processes that can be represented as a combination of white and power-law noise,  1/fn, with 
frequency, f.   With missing data, standard spectral techniques involving Fourier transforms are not 
appropriate. Instead, time domain techniques involving construction and inversion of large data covariance 
matrices are employed.  Bos et al. [2012] demonstrate one technique that substantially increases the 
efficiency of the MLE methods, but it provides only an approximate solution for power-law indices greater 
than 1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by 
simply forming a data-filter that adds noise processes rather than combining them in quadrature. 
Consequently, the inversion of the data covariance matrix is simplified and it provides robust results for a 
wide range of power-law indices. With the new formulation, the efficiency is typically improved by about a 
factor of 8 over previous MLE algorithms [Langbein, 2004].

The new algorithm can be downloaded at http://escweb.wr.usgs.gov/share/langbein/Web/OUT/est_noise/.  
The main program, est_noise7.2x, provides a number of basic functions that can be used to model the time-
dependent part of time series, (rate, rate change, offset, exponential, Omori-law, sinusoids, and other, user 
supplied functions) and a variety of models that describe the temporal covariance of the data. These models 
of background noise include white noise, power-law noise, Gauss-Markov noise, and band-passed filtered 
noise; these can be combined to provide a complex mixture of noise processes. In addition, the new code 
provides a choice between adding the noise in quadrature, which has been the standard method, and 
summing the filter functions representing each noise process, which is the newer, faster method.  
Furthermore, the main program is packaged with a variety of utilities that can remove outliers, and 
importantly, help assess the success of the noise model with respect to the observations. These components 
are combined into example scripts which can help users analyze their own data.

Background: From GNSS time-series of positions, we extract velocities, accelerations, offsets, amplitudes of 
sinusoids, and post-seismic decay parameters, and importantly, the uncertainties of these values. This is 
accomplished using Least Squares regression. Key to estimating these parameters with any reasonable chance of 
accuracy is knowledge of the error structure of the time-series.
        For computational simplicity, most investigators, at least in the past, assume that each observation of position is 
independent of its neighboring observation and that the error-model is Gaussian.
        However, nearly all geophysical time-series have temporal correlations and these are quantified in Least 
Squares as the data covariance matrix.
        For the assumption of no correlations, the covariance matrix is diagonal and the user will use “weighted Least 
Squares” to estimate the velocities, offsets, etc, along with their uncertainties.
        However, in reality, the data are temporally correlated and that covariance is non-diagonal which complicates 
the regression: 1) one needs to “measure” the temporal covariance and 2) invert that large data covariance – 
Traditionally, both are computationally expensive.

LEAST SQUARES:   x=(AtC-1A)-1AtC-1d where d is data, x are the model parameters (velocity, etc), A is the 
design matrix and C-1is the inverse of the data covariance.

-40

-20

0

20

Po
w

er
 d

en
si

ty
, m

m
2 /c

/y
r, 

db

0.1 11 10 100

Frequency, c/yr
-40

-20

0

20

Po
w

er
 d

en
si

ty
, m

m
2 /c

/y
r, 

db

0.1 11 10 100

Frequency, c/yr

White noise 1 mm

-40

-20

0

20

Po
w

er
 d

en
si

ty
, m

m
2 /c

/y
r, 

db

0.1 11 10 100

Frequency, c/yr

Random walk 2 mm/yr0.5

-40

-20

0

20

Po
w

er
 d

en
si

ty
, m

m
2 /c

/y
r, 

db

0.1 11 10 100

Frequency, c/yr

Flicker 2 mm/yr0.25

-40

-20

0

20

Po
w

er
 d

en
si

ty
, m

m
2 /c

/y
r, 

db

0.1 11 10 100

Frequency, c/yr

Power law N=1.5

-40

-20

0

20

Po
w

er
 d

en
si

ty
, m

m
2 /c

/y
r, 

db

0.1 11 10 100

Frequency, c/yr

Band pass filtered

-40

-20

0

20

Po
w

er
 d

en
si

ty
, m

m
2 /c

/y
r, 

db

0.1 11 10 100

Frequency, c/yr
-40

-20

0

20

Po
w

er
 d

en
si

ty
, m

m
2 /c

/y
r, 

db

0.1 11 10 100

Frequency, c/yr

Gauss-Markov fo=1 c/yr and N=2.5

Frequency domain representations of functions 
that can characterize temporal covariance 
(Langbein, 2004).

 
PARTITIONING THE DATA COVARIANCE:  rtC-1r = ro

t{Co
-1 - Co

-1M [Mt Co
-1M]-1Mt Co

-1}ro

Inverse covariance with NO 
missing data --> Bos uses 
fast Toeplitz solver to invert, 
which is very fast!

Adjustment due to MISSING data; 
requires Cholesky decomposition 
which can be slow for many missing 
observations.

r is the difference between the observed and the predicted, ro is the same but for no missing data, and the 
combination of M and Mt represent parts of Co

-1 the with missing data.

The most common method to simultaneously measure the temporal correlations and to estimate the functional model that 
describes the position time series (eg. velocity) is Maximum Likelihood Estimator (MLE). This relies upon making 
“guesses” of the parameters that describe a model for temporal correlations (which is typically a power-law in the frequency 
domain) and adjusting those parameters such that the likelihood is maximized. The algorithm of choice for optimization is 
the Nedler – Mead downhill simplex. This scheme has been used by Simon Williams in his CATS software and by me in 
est_noise6.50. Both of these algorithms handle time-series with missing observations or gaps. With proper optimization, 
typically using Cholesky decomposition to invert the data covariance, these codes can take at least 400 to 500 seconds to 
analyze 10 years of daily position GNSS data.

More recently Machiel Bos (Bos et al. 2012) developed a new algorithm, Hector, which, for time-series with only a few 
gaps, completes the MLE computation in less than 10 seconds for a 10 year long time series – Which is a significant 
improvement. The improved algorithm uses:
        A new way of partitioning the data covariance – One part assumes that the data have no gaps and the second part 
represents the “missing” observations and
        For the portion of the covariance matrix that models the complete data set, he makes the approximation that matrix is 
Toeplitiz and he has found an algorithm that can invert Toeplitz matrices efficiently.

What is New: Using the data covariance partitioning from Bos et al. (2012), I have found a method that 
removes the need for the Toeplitz approximation and yields similar computational efficiency as Hector. I call this 
new program est_noise7.2x.
        Instead of adding in quadrature the constituent functional models that comprise data covariance, I create a 
single filter function by adding all of the constituent functional models that comprise the data covariance.
        This filter function is used to create the non-missing portion of the data covariance. Significantly, by knowing 
that this is a filter function, it can be rapidly inverted either through deconvolution or inverting the discrete Fourier 
transform (DFT).

Traditional method of adding error in quadrature: e2 = e1
2 + e2

2 + e3
2  + ...or  C = C1 + C2 + C3 +... 

where ei and Ci are comprised of a single source of error such as white noise or power law noise.  Or,
  ei = fi * wi where the filter, fi , is convolved with an independent source of white noise, wi.  fi represents one 
of the noise functions shown to the left.

An alternative composition of error is to add the desired noise functions, shown to the left, then convolve that more 
complex filter with a single source of white noise;  e = [ f1 + f2 + f3 + ...] * w
Consequently,  the inverse filter function is easily solved by deconvolution of: d = ft * ft

-1, where d is the delta 

function.  Therefore, the covariance matrix is C=F Ft, and its inverse is C-1 = F-1t F-1. Like Bos et al.'s Toeplitz 

solver, the inverse calculation is fast and without the restriction of the covariance matrix being Toeplitz.

The key difference between the traditional quadrature and the additive method proposed here 
is the order of adding and squaring; Quadrature Squares then Adds; my Additive method 
Adds then Squares.

Program	 est_noise6.50	 	 est_noise7.2x	 	       hector

ID         		 6.50                	 7.21n	 7.21c	 7.21f	 HecC	 Hec
Data Error	quad         	 	 quad	 additive	additive	quad	 quad
Toeplitz
      approx.	no               		 no		 no		 no		 yes		 yes
Inverse
    routine	 Cholesky	 	 Chol.	 Chol.	 Bos		 Chol.	 Bos

Bos et al. (2012) covariance partitioning

Comparison of three algorithms

Simulations:  To compare these programs and options, I created 15 sets of data having a combination of 0.7 
mm of white noise and 3.0 mm/yr0.375 of power law noise with an index of 1.5. Each data set originally had 4000 
observations with none missing. To test the performance of each program and its options, I ran several tests using 
each program and its options and I recorded the speed of computation (cpu speed), the estimates of the white and 
power-law parameters, along with the rate, size of offset, and their errors. Furthermore, for each set of simulated 
data, I arbitrarily remove 5, 10, 15, 20, 25, 30, 40 and 50% of the time series and re-ran all six options. (Note; the 
power law index for these simulations was chosen to be 1.5 because the version of Hector that I have has a limit 
of 1.6 due to the Toeplitz solver/approximation used in the covariance inversion.)

Algorithm Performance; Comparison
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CPU Speed

With no gaps in the data, both algorithms (Hec and 7.21f) that employ the covariance partitioning complete the analysis 
in 5 to 8 seconds, or about 50 to 100x faster than the algorithms that use Cholesky decomposition.

However, with more gaps in the data, the cpu time increases for Hec and 7.21f because it becomes more expensive to do 
the Cholesky decomposition of the right hand side of the partitioned covariance.

On the other hand, with more gaps in the data, size of the covariance matrix decreases and Cholesky decomposition is 
more efficient relative to the partitioning method.
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Resolving power-law index and white noise amplitude

The actual estimates of the parameters describing the noise model depend upon how the 
data covariance is constructed: quadrature or addition of the filter functions.

Comparing PSDs from simulations
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Yet, independent of the construction of 
the covariance, the power spectra for 
both approaches are the same!
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Comparison of the estimate of rate, offset, and their standard errors
Simulated rate is 0.00+/-0.24 mm/yr

Simulated offset is 0.00+/-0.49 mm/yr
Plots show differences relative to the "legacy" MLE program, 6.50

The differences between the estimates of rates, offsets, and their uncertainties are relatively 
minor independent of the algorithm and the construction of the data covariance.
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Example

GNSS data from Parkfield showing the displacements from 
the San Simeon and Parkfield Earthquakes.

Residuals after removing a rate, co-seismic offsets, and post-
seismic deformation (Omori law). Outliers are shown in red 
and are removed from time-series prior to analysis of noise 
properties and time-dependent deformation.

Four different models of noise have been analyzed by 
est_noise7.2x. One can evaluate the success of each model by 
examining several coefficients including the Maximum 
Likelihood Estimator (MLE), and the Akaike/Bayesian 
Information Criterion (AIC/BIC), or graphically using 
“wander” or “drift”. Drift, d(t) is defined as
RMS of [x(t+t)-x(t)] as a function of various intervals, t, for 
time series, x(t).  The drift of the data residuals can be 
graphically compared with simulated data having the same 
noise as the real data.

Since flicker or random-walk plus white noise is the simplest 
variety of colored noise, the one that maximizes the 
likelihood is termed the Null model. For this Parkfield 
example, RW + WN is the better of the two and is designated 
as Null. Adding complexity with power-law, flicker plus 
random-walk, Gauss-Markov, and band-passed filtered noise 
improves the MLE, but in terms of the graphical drift and 
AIC/BIC coefficients, indicates that additional complexity is 
not required; hence these data are well characterized by 
random-walk noise.

.

Conclusion:

New algorithm provides up to 50X improvement in cpu speed over older 
version of MLE codes that measure temporal correlations of the and 
simultaneously fit time-dependent functions to the data.

More typical performance is closer to 10X for most GNSS time series.


